

Invenio-Indexer

[image: https://img.shields.io/github/license/inveniosoftware/invenio-indexer.svg]
 [https://github.com/inveniosoftware/invenio-indexer/blob/master/LICENSE][image: https://img.shields.io/travis/inveniosoftware/invenio-indexer.svg]
 [https://travis-ci.org/inveniosoftware/invenio-indexer][image: https://img.shields.io/coveralls/inveniosoftware/invenio-indexer.svg]
 [https://coveralls.io/r/inveniosoftware/invenio-indexer][image: https://img.shields.io/pypi/v/invenio-indexer.svg]
 [https://pypi.org/pypi/invenio-indexer]Record indexer for Invenio.

Further documentation is available on
https://invenio-indexer.readthedocs.io/

User’s Guide

This part of the documentation will show you how to get started in using
Invenio-Indexer.

	Installation

	Configuration

	Usage
	Initialization

	Indexing a record

	Bulk indexing

	Customizing record indexing

API Reference

If you are looking for information on a specific function, class or method,
this part of the documentation is for you.

	API Docs
	Record Indexer

	Flask Extension

	Celery tasks

	Signals

Additional Notes

Notes on how to contribute, legal information and changes are here for the
interested.

	Contributing

	Changes

	License

	Contributors

Installation

Invenio-Indexer is on PyPI so all you need is:

$ pip install invenio-indexer

Invenio-Indexer depends on Invenio-Search, Invenio-Records and Celery/Kombu.

Requirements

Invenio-Indexer requires a message queue in addition to Elasticsearch
(Invenio-Search) and a database (Invenio-Records). See Kombu documentation
for list of supported message queues (e.g. RabbitMQ):
http://kombu.readthedocs.io/en/latest/introduction.html#transport-comparison

Configuration

Record indexer for Invenio.

	
invenio_indexer.config.INDEXER_BEFORE_INDEX_HOOKS = []

	List of automatically connected hooks (function or importable string).

	
invenio_indexer.config.INDEXER_BULK_REQUEST_TIMEOUT = 10

	Request timeout to use in Bulk indexing.

	
invenio_indexer.config.INDEXER_DEFAULT_DOC_TYPE = 'record-v1.0.0'

	Default doc_type to use if no schema is defined.

	
invenio_indexer.config.INDEXER_DEFAULT_INDEX = 'records-record-v1.0.0'

	Default index to use if no schema is defined.

	
invenio_indexer.config.INDEXER_MQ_EXCHANGE = <unbound Exchange indexer(direct)>

	Default exchange for message queue.

	
invenio_indexer.config.INDEXER_MQ_QUEUE = <unbound Queue indexer -> <unbound Exchange indexer(direct)> -> indexer>

	Default queue for message queue.

	
invenio_indexer.config.INDEXER_MQ_ROUTING_KEY = 'indexer'

	Default routing key for message queue.

	
invenio_indexer.config.INDEXER_RECORD_TO_INDEX = 'invenio_indexer.utils.default_record_to_index'

	Provide an implemetation of record_to_index function

	
invenio_indexer.config.INDEXER_REPLACE_REFS = True

	Whether to replace JSONRefs prior to indexing record.

Usage

Record indexer for Invenio.

Invenio-Indexer is responsible for sending records for indexing in
Elasticsearch so that the records can be searched. Invenio-Indexer can either
send the records in bulk or individually. Bulk indexing is far superior in
performance if multiple records needs to be indexed at the price of delay. Bulk
indexing works by queuing records in a message queue, which is then consumed
and sent to Elasticsearch.

Initialization

First create a Flask application:

>>> from flask import Flask
>>> app = Flask('myapp')
>>> app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite://'

You initialize Indexer like a normal Flask extension, however Invenio-Indexer
is dependent on Invenio-Records and Invenio-Search so you need to initialize
these extensions first:

>>> from invenio_db import InvenioDB
>>> ext_db = InvenioDB(app)
>>> from invenio_search import InvenioSearch
>>> ext_search = InvenioSearch(app)
>>> from invenio_records import InvenioRecords
>>> ext_records = InvenioRecords(app)

We now initialize Invenio-Indexer:

>>> from invenio_indexer import InvenioIndexer
>>> ext_indexer = InvenioIndexer(app)

In order for the following examples to work, you need to work within an Flask
application context so let’s push one:

>>> ctx = app.app_context()
>>> ctx.push()

Also, for the examples to work we need to create the database tables and
Elasticsearch indexes (note, in this example we use an in-memory SQLite
database):

>>> from invenio_db import db
>>> db.create_all()

Indexing a record

Let’s start by creating a record that we would like to index:

>>> from invenio_db import db
>>> from invenio_records.api import Record
>>> record = Record.create({'title': 'A test'})
>>> db.session.commit()

Note, that you are responsible for ensuring that the record is committed to the
database, prior to sending it for indexing.

Now, let’s index the record:

>>> from invenio_indexer.api import RecordIndexer
>>> indexer = RecordIndexer()
>>> res = indexer.index(record)

By default, records are sent to the Elasticsearch index defined by the
configuration variable INDEXER_DEFAULT_INDEX. If the record however has a
$schema attribute, the index is automatically determined from this. E.g.
the following record:

>>> r = Record({
... '$schema': 'http://example.org/records/record-v1.0.0.json'})

Would be indexed in the following Elasticsearch index/doctype:

>>> index, doc_type = indexer.record_to_index(record)

Bulk indexing

If you have many records to index, bulk indexing is far superior in speed to
single record indexing. Bulk indexing requires the existence of a queue on your
broker, so since this is the very first time we send any records for bulk
indexing, we will have to create this queue:

>>> from celery.messaging import establish_connection
>>> queue = app.config['INDEXER_MQ_QUEUE']
>>> with establish_connection() as conn:
... queue(conn).declare()
'indexer'

We can now send a record for bulk indexing:

>>> indexer.bulk_index([str(r.id)])

Above will send the record id to the queue on your broker and wait for the bulk
indexer to execute. This is normally done in the background by a Celery task
which can be started from the command line like e.g.:

$ <instance cmd> index run

Note, you can achieve much higher indexing speeds, by having multiple processes
running process_bulk_queue concurrently. This can be achieved with e.g.:

Send 8 Celery tasks to bulk index messages from the "indexer" queue
$ <instance cmd> index run -d -c 8

Customizing record indexing

Record indexing can easily be customized using either:

	JSONRef: By default, all JSONRefs for each record is resolved prior to
indexing.

	Signals: Before each record is indexed the signal before_record_index
is sent, in order to allow modification of the record. The signal can be used
to e.g. remove sensitive data and/or add extra data to the record.

JSONRef

JSONRefs inside the record are by default resolved prior to indexing the
record. For instance the value for the rel key will be replaced with the
referenced JSON object:

>>> r = Record.create({
... 'title': 'A ref',
... 'rel': {'$ref': 'http://dx.doi.org/10.1234/foo'}})

See Invenio-Records documentation for how to customize the JSONRef resolver
to resolve references locally. The JSONRefs resolving works on all indexed
records, and can be switched off using the configuration:

>>> app.config['INDEXER_REPLACE_REFS'] = False

Signal

First write a signal receiver. In the example below, we remove the attribute
_internal if it exists in the record:

>>> def indexer_receiver(sender, json=None, record=None,
... index=None, doc_type=None, arguments=None, **kwargs):
... if '_internal' in json:
... del json['_internal']

The receiver takes various parameters besides the sender (which is the Flask
application)

	json: JSON is a Python dictionary dump of the record, and the actual
data that will be sent to the index. Modify this dictionary in order to
change the document.

	record: The record from which the JSON was dumped.

	index: The Elasticsearch index in which the record will be indexed.

	doc_type: The Elasticsearch document type for the record.

	arguments: The arguments that will be passed to the index() call.

Connecting the receiver to the signal is as simple as (do this e.g. in your
extension’s init_app method):

>>> from invenio_indexer.signals import before_record_index
>>> res = before_record_index.connect(indexer_receiver, sender=app)

Receivers can be useful if you have rules that apply to all of your records.
If specific types of records have different rules (e.g. in case you had
“records” and “authors”) you can use the
before_record_index.dynamic_connect() function as so:

>>> # Only be applied to documents sent to the "authors-v1.0.0" index
>>> res = before_record_index.dynamic_connect(
... indexer_receiver, sender=app, index='authors-v1.0.0')

API Docs

Record Indexer

API for indexing of records.

	
class invenio_indexer.api.BulkRecordIndexer(search_client=None, exchange=None, queue=None, routing_key=None, version_type=None, record_to_index=None)

	Provide an interface for indexing records in Elasticsearch.

Uses bulk indexing by default.

Initialize indexer.

	Parameters:	
	search_client – Elasticsearch client.
(Default: current_search_client)

	exchange – A kombu.Exchange [http://docs.celeryproject.org/projects/kombu/en/latest/reference/kombu.html#kombu.Exchange] instance for message queue.

	queue – A kombu.Queue [http://docs.celeryproject.org/projects/kombu/en/latest/reference/kombu.html#kombu.Queue] instance for message queue.

	routing_key – Routing key for message queue.

	version_type – Elasticsearch version type.
(Default: external_gte)

	record_to_index – Function to extract the index and doc_type
from the record.

	
delete(record)

	Delete a record.

	Parameters:	record – Record instance.

	
delete_by_id(record_uuid)

	Delete record from index by record identifier.

	
index(record)

	Index a record.

The caller is responsible for ensuring that the record has already been
committed to the database. If a newer version of a record has already
been indexed then the provided record will not be indexed. This
behavior can be controlled by providing a different version_type
when initializing RecordIndexer.

	Parameters:	record – Record instance.

	
index_by_id(record_uuid)

	Index a record by record identifier.

	Parameters:	record_uuid – Record identifier.

	
class invenio_indexer.api.Producer(channel, exchange=None, routing_key=None, serializer=None, auto_declare=None, compression=None, on_return=None)

	Producer validating published messages.

For more information visit kombu.Producer [http://docs.celeryproject.org/projects/kombu/en/latest/reference/kombu.html#kombu.Producer].

	
publish(data, **kwargs)

	Validate operation type.

	
class invenio_indexer.api.RecordIndexer(search_client=None, exchange=None, queue=None, routing_key=None, version_type=None, record_to_index=None)

	Provide an interface for indexing records in Elasticsearch.

Bulk indexing works by queuing requests for indexing records and processing
these requests in bulk.

Initialize indexer.

	Parameters:	
	search_client – Elasticsearch client.
(Default: current_search_client)

	exchange – A kombu.Exchange [http://docs.celeryproject.org/projects/kombu/en/latest/reference/kombu.html#kombu.Exchange] instance for message queue.

	queue – A kombu.Queue [http://docs.celeryproject.org/projects/kombu/en/latest/reference/kombu.html#kombu.Queue] instance for message queue.

	routing_key – Routing key for message queue.

	version_type – Elasticsearch version type.
(Default: external_gte)

	record_to_index – Function to extract the index and doc_type
from the record.

	
bulk_delete(record_id_iterator)

	Bulk delete records from index.

	Parameters:	record_id_iterator – Iterator yielding record UUIDs.

	
bulk_index(record_id_iterator)

	Bulk index records.

	Parameters:	record_id_iterator – Iterator yielding record UUIDs.

	
create_producer(*args, **kwds)

	Context manager that yields an instance of Producer.

	
delete(record, **kwargs)

	Delete a record.

	Parameters:	
	record – Record instance.

	kwargs – Passed to
elasticsearch.Elasticsearch.delete() [https://elasticsearch-py.readthedocs.io/en/master/api.html#elasticsearch.Elasticsearch.delete].

	
delete_by_id(record_uuid, **kwargs)

	Delete record from index by record identifier.

	Parameters:	
	record_uuid – Record identifier.

	kwargs – Passed to RecordIndexer.delete().

	
index(record, arguments=None, **kwargs)

	Index a record.

The caller is responsible for ensuring that the record has already been
committed to the database. If a newer version of a record has already
been indexed then the provided record will not be indexed. This
behavior can be controlled by providing a different version_type
when initializing RecordIndexer.

	Parameters:	record – Record instance.

	
index_by_id(record_uuid, **kwargs)

	Index a record by record identifier.

	Parameters:	
	record_uuid – Record identifier.

	kwargs – Passed to RecordIndexer.index().

	
mq_exchange

	Message Queue exchange.

	Returns:	The Message Queue exchange.

	
mq_queue

	Message Queue queue.

	Returns:	The Message Queue queue.

	
mq_routing_key

	Message Queue routing key.

	Returns:	The Message Queue routing key.

	
process_bulk_queue(es_bulk_kwargs=None)

	Process bulk indexing queue.

	Parameters:	es_bulk_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Passed to
elasticsearch.helpers.bulk() [https://elasticsearch-py.readthedocs.io/en/master/helpers.html#elasticsearch.helpers.bulk].

	
record_cls

	alias of Record

	
record_to_index(record)

	Get index/doc_type given a record.

	Parameters:	record – The record where to look for the information.

	Returns:	A tuple (index, doc_type).

Flask Extension

Flask exension for Invenio-Indexer.

	
class invenio_indexer.ext.InvenioIndexer(app=None)

	Invenio-Indexer extension.

Extension initialization.

	Parameters:	app – The Flask application. (Default: None)

	
init_app(app)

	Flask application initialization.

	Parameters:	app – The Flask application.

	
init_config(app)

	Initialize configuration.

	Parameters:	app – The Flask application.

	
record_to_index

	Import the configurable ‘record_to_index’ function.

Celery tasks

Celery tasks to index records.

	
invenio_indexer.tasks.delete_record(record_uuid)

	Delete a single record.

	Parameters:	record_uuid – The record UUID.

	
invenio_indexer.tasks.index_record(record_uuid)

	Index a single record.

	Parameters:	record_uuid – The record UUID.

	
invenio_indexer.tasks.process_bulk_queue(version_type=None, es_bulk_kwargs=None)

	Process bulk indexing queue.

	Parameters:	
	version_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Elasticsearch version type.

	es_bulk_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Passed to
elasticsearch.helpers.bulk() [https://elasticsearch-py.readthedocs.io/en/master/helpers.html#elasticsearch.helpers.bulk].

Note: You can start multiple versions of this task.

	
invenio_indexer.tasks.process_bulk_queue(version_type)

	Process bulk indexing queue.

	Parameters:	
	version_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Elasticsearch version type.

	es_bulk_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Passed to
elasticsearch.helpers.bulk() [https://elasticsearch-py.readthedocs.io/en/master/helpers.html#elasticsearch.helpers.bulk].

Note: You can start multiple versions of this task.

	
invenio_indexer.tasks.index_record(record_uuid)

	Index a single record.

	Parameters:	record_uuid – The record UUID.

	
invenio_indexer.tasks.delete_record(record_uuid)

	Delete a single record.

	Parameters:	record_uuid – The record UUID.

Signals

Signals for indexer.

	
invenio_indexer.signals.before_record_index = <blinker.base.NamedSignal object at 0x7f6d575b9d10; 'before-record-index'>

	Signal sent before a record is indexed.

The sender is the current Flask application, and two keyword arguments are
provided:

	json: The dumped record dictionary which can be modified.

	record: The record being indexed.

	index: The index in which the record will be indexed.

	doc_type: The doc_type for the record.

	arguments: The arguments to pass to Elasticsearch for indexing.

	**kwargs: Extra arguments.

This signal also has a .dynamic_connect() method which allows some more
flexible ways to connect receivers to it. The most common use case is that you
want to apply a receiver only to a specific index. In that case you can call:

For more complex conditions you can provide a function via the
condition_func parameter like so:

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Types of Contributions

Report Bugs

Report bugs at https://github.com/inveniosoftware/invenio-indexer/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Invenio-Indexer could always use more documentation, whether as part of the
official Invenio-Indexer docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at
https://github.com/inveniosoftware/invenio-indexer/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up invenio-indexer for local development.

	Fork the inveniosoftware/invenio-indexer repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/invenio-indexer.git

	Install your local copy into a virtualenv. Assuming you have
virtualenvwrapper installed, this is how you set up your fork for local
development:

$ mkvirtualenv invenio-indexer
$ cd invenio-indexer/
$ pip install -e .[all]

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass tests:

$./run-tests.sh

The tests will provide you with test coverage and also check PEP8
(code style), PEP257 (documentation), flake8 as well as build the Sphinx
documentation and run doctests.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -s
 -m "component: title without verbs"
 -m "* NEW Adds your new feature."
 -m "* FIX Fixes an existing issue."
 -m "* BETTER Improves and existing feature."
 -m "* Changes something that should not be visible in release notes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests and must not decrease test coverage.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring.

	The pull request should work for Python 2.7, 3.5 and 3.6. Check
https://travis-ci.org/inveniosoftware/invenio-indexer/pull_requests
and make sure that the tests pass for all supported Python versions.

Changes

Version 1.1.2 (released 2020-04-28)

	Introduces RecordIndexer.record_cls for customizing the record class.

	Removes Python 2 support.

Version 1.1.1 (released 2019-11-21)

	Fix bulk action parameters compatibility for Elasticsearch v7.

Version 1.1.0 (released 2019-07-19)

	Add support for Elasticsearch v7.

	Integrate index prefixing.

	Add before_record_index.dynamic_connect() signal utility for more
flexible indexer receivers.

	Add schema_to_index utility from invenio-search (will be removed in
next minor version of invenio-search).

Version 1.0.2 (released 2019-05-27)

	Allow Elasticsearch indexing arguments to be modified by subscribing to
before_record_index signal.

Version 1.0.1 (released 2018-10-11)

	Allow forwarding arguments from RecordIndexer.process_bulk_queue to
elasticsearch.helpers.bulk calls via the es_bulk_kwargs parameter.

Version 1.0.0 (released 2018-03-23)

	Initial public release.

License

MIT License

Copyright (C) 2016-2018 CERN.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Note

In applying this license, CERN does not waive the privileges and immunities
granted to it by virtue of its status as an Intergovernmental Organization or
submit itself to any jurisdiction.

Contributors

	Alexander Ioannidis

	Alizee Pace

	Chiara Bigarella

	Diego Rodriguez

	Harris Tzovanakis

	Javier Martin Montull

	Jiri Kuncar

	Krzysztof Nowak

	Lars Holm Nielsen

	Leonardo Rossi

	Nicolas Harraudeau

	Nikos Filippakis

	Paulina Lach

	Salvatore Zaza

	Sebastian Witowski

	Tibor Simko

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 invenio_indexer	

 	
 	
 invenio_indexer.api	

 	
 	
 invenio_indexer.config	

 	
 	
 invenio_indexer.ext	

 	
 	
 invenio_indexer.signals	

 	
 	
 invenio_indexer.tasks	

Index

 B
 | C
 | D
 | I
 | M
 | P
 | R

B

 	
 	before_record_index (in module invenio_indexer.signals)

 	bulk_delete() (invenio_indexer.api.RecordIndexer method)

 	
 	bulk_index() (invenio_indexer.api.RecordIndexer method)

 	BulkRecordIndexer (class in invenio_indexer.api)

C

 	
 	create_producer() (invenio_indexer.api.RecordIndexer method)

D

 	
 	delete() (invenio_indexer.api.BulkRecordIndexer method)

 	(invenio_indexer.api.RecordIndexer method)

 	
 	delete_by_id() (invenio_indexer.api.BulkRecordIndexer method)

 	(invenio_indexer.api.RecordIndexer method)

I

 	
 	index() (invenio_indexer.api.BulkRecordIndexer method)

 	(invenio_indexer.api.RecordIndexer method)

 	index_by_id() (invenio_indexer.api.BulkRecordIndexer method)

 	(invenio_indexer.api.RecordIndexer method)

 	INDEXER_BEFORE_INDEX_HOOKS (in module invenio_indexer.config)

 	INDEXER_BULK_REQUEST_TIMEOUT (in module invenio_indexer.config)

 	INDEXER_DEFAULT_DOC_TYPE (in module invenio_indexer.config)

 	INDEXER_DEFAULT_INDEX (in module invenio_indexer.config)

 	INDEXER_MQ_EXCHANGE (in module invenio_indexer.config)

 	INDEXER_MQ_QUEUE (in module invenio_indexer.config)

 	INDEXER_MQ_ROUTING_KEY (in module invenio_indexer.config)

 	
 	INDEXER_RECORD_TO_INDEX (in module invenio_indexer.config)

 	INDEXER_REPLACE_REFS (in module invenio_indexer.config)

 	init_app() (invenio_indexer.ext.InvenioIndexer method)

 	init_config() (invenio_indexer.ext.InvenioIndexer method)

 	invenio_indexer (module)

 	invenio_indexer.api (module)

 	invenio_indexer.config (module)

 	invenio_indexer.ext (module)

 	invenio_indexer.signals (module)

 	invenio_indexer.tasks (module)

 	InvenioIndexer (class in invenio_indexer.ext)

M

 	
 	mq_exchange (invenio_indexer.api.RecordIndexer attribute)

 	
 	mq_queue (invenio_indexer.api.RecordIndexer attribute)

 	mq_routing_key (invenio_indexer.api.RecordIndexer attribute)

P

 	
 	process_bulk_queue() (invenio_indexer.api.RecordIndexer method)

 	
 	Producer (class in invenio_indexer.api)

 	publish() (invenio_indexer.api.Producer method)

R

 	
 	record_cls (invenio_indexer.api.RecordIndexer attribute)

 	record_to_index (invenio_indexer.ext.InvenioIndexer attribute)

 	
 	record_to_index() (invenio_indexer.api.RecordIndexer method)

 	RecordIndexer (class in invenio_indexer.api)

 _static/up.png

_static/comment-bright.png

_static/plus.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		Invenio-Indexer

 		Installation

 		Configuration

 		Usage

 		Initialization

 		Indexing a record

 		Bulk indexing

 		Customizing record indexing

 		JSONRef

 		Signal

 		API Docs

 		Record Indexer

 		Flask Extension

 		Celery tasks

 		Signals

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Changes

 		License

 		Contributors

_static/down-pressed.png

_static/up-pressed.png

_static/down.png

_static/comment.png

